<th id="wu2k2"><s id="wu2k2"></s></th> <blockquote id="wu2k2"></blockquote>
  • <tr id="wu2k2"></tr>
  • <samp id="wu2k2"><tbody id="wu2k2"></tbody></samp><samp id="wu2k2"><tbody id="wu2k2"></tbody></samp>
  • 更多精彩內容,歡迎關注:

    視頻號
    視頻號

    抖音
    抖音

    快手
    快手

    微博
    微博

    java apriori

    文檔

    java apriori

    Apriori算法是第一個關聯規則挖掘算法,它利用逐層搜索的迭代方法找出數據庫中項集的關系,以形成規則,其過程由連接(類矩陣運算)與剪枝(去掉那些沒必要的中間結果)組成。
    推薦度:
    導讀Apriori算法是第一個關聯規則挖掘算法,它利用逐層搜索的迭代方法找出數據庫中項集的關系,以形成規則,其過程由連接(類矩陣運算)與剪枝(去掉那些沒必要的中間結果)組成。

    java apriori是什么,讓我們一起了解一下?

    Apriori算法是第一個關聯規則挖掘算法,它利用逐層搜索的迭代方法找出數據庫中項集的關系,以形成規則,其過程由連接(類矩陣運算)與剪枝(去掉那些沒必要的中間結果)組成。

    Apriori算法的描述如下:

    (1)掃描全部數據,產生候選1-項集的集合C1。

    (2)根據最小支持度,由候選1-項集的集合C1產生頻繁1-項集的集合L1。

    (3)對k>1,重復執行步驟(4)、(5)、(6)。

    (4)由Lk執行連接和剪枝操作,產生候選(k+l)-項集的集合Ck+1。

    (5)根據最小支持度,由候選(k+l)-項集的集合Ck+1,產生頻繁(k+1)-項集的集合Lk+1。

    (6)若L≠Φ,則k=k+1,跳往步驟(4);否則,跳往步驟(7)。

    (7)根據最小置信度,由頻繁項集產生強關聯規則,結束。

    Apriori算法如何讓JAVA實現?

    項集用HashMap,integer>來表示,關鍵字用Set集合可以自動排序,值用于記錄項集在原始事物數據中出現的次數,原始數據用文件方式讀取,注意文件內容每一行為一個原始事物項,不需要輸入事物的編號。

    package?datamining;
    ?
    import?java.io.BufferedReader;
    import?java.io.File;
    import?java.io.FileNotFoundException;
    import?java.io.FileReader;
    import?java.io.IOException;
    import?java.util.ArrayList;
    import?java.util.HashMap;
    import?java.util.HashSet;
    import?java.util.Iterator;
    import?java.util.List;
    import?java.util.Map;
    import?java.util.Set;
    ?
    public?class?Apriori?{
    //剪枝函數
    public?ArrayList>?apriori_gen(HashMap,?Integer>?L_last,?int?last_index){
    ArrayList>?result?=?new?ArrayList>();??//存儲剪枝后的結果
    ArrayList>?item_set?=?null;??
    item_set?=?get_item_set(L_last);??//獲取上一個頻繁項的所有項集,并轉為字符串List
    for(int?i?=?0;?i??str?=?item_set.get(i);
    for(int?j?=?i?+?1;?j??new_item?=?new?HashSet();??//存儲新的候選項集
    ArrayList?str2?=?item_set.get(j);
    int?length?=?str.size();
    for(int?k?=?0;?k??candidate,?ArrayList>?last_item_set,?int?last_index)?{
    boolean?flag?=?true;
    ArrayList>?sub_set?=?get_subset(candidate,?last_index);
    //for(int?j?=?0;?j??item?=?sub_set.get(i);
    int?j?=?0;
    for(j?=?0;?j?>?get_subset(Set?candidate,?int?index){
    ArrayList>?sub_set?=?new?ArrayList>();
    ArrayList?item_set?=?new?ArrayList();
    Iterator?iter?=?candidate.iterator();
    while(iter.hasNext())
    item_set.add((String)iter.next());
    if(index?==?1)?{?????????//當index等于1時單獨考慮
    for(int?k?=?0;?k??buffer?=?new?ArrayList();
    buffer.add(item_set.get(k));
    sub_set.add(buffer);
    }
    }else?{
    for(int?i?=?0;?i??buffer?=?new?ArrayList();
    buffer.add(item_set.get(i));
    for(int?k?=?0;?k?>?get_item_set(HashMap,?Integer>?L_last){
    ArrayList>?result?=?new?ArrayList>();
    Iterator?iter?=?L_last.entrySet().iterator();
    while?(iter.hasNext())?{
    Map.Entry?entry?=?(Map.Entry)?iter.next();
    Set?set?=?(Set)entry.getKey();
    Iterator?iter2?=?set.iterator();
    ArrayList?item?=?new?ArrayList();
    while(iter2.hasNext())?{
    String?str?=?(String)iter2.next();
    item.add(str);
    }
    result.add(item);
    }
    return?result;
    }
    //處理原始事物數據
    public?HashMap,?Integer>?process_rawdata(ArrayList>?raw_input,?int?min_sub){
    HashMap,?Integer>?first_input?=?new?HashMap,?Integer>();?//存儲處理后結果
    //處理原始輸入事物數據,統計每個單獨事物的次數
    for(int?i?=?0;?i??item?=?raw_input.get(i);
    Iterator?iter?=?item.iterator();
    while(iter.hasNext())?{
    String?str?=?(String)iter.next();
    Set?single_item?=?new?HashSet();
    single_item.add(str);
    if(first_input.containsKey(single_item))?{
    int?count?=?first_input.get(single_item);
    first_input.put(single_item,?count+1);
    }else
    first_input.put(single_item,?1);
    }
    }
    //移除單獨事物出現次數少于min_sub的事物
    for?(Iterator,?Integer>>?iter?=?first_input.entrySet().iterator();?iter.hasNext();){
    ????Map.Entry,?Integer>?entry?=?iter.next();
    Object?key?=?entry.getKey();
    int?val?=?(int)entry.getValue();
    if(val??item,?ArrayList>?raw_input)?{
    int?count?=?0;
    Set?item2?=?new?HashSet<>(item);
    for(int?i?=?0;?i??item_set?=?new?HashSet(raw_input.get(i));
    item_set.retainAll(item2);
    if(item_set.size()?==?item2.size())
    count++;
    }
    return?count;
    }
    //算法主函數
    public?List,?Integer>>?apriori_main(ArrayList>?raw_input,?int?min_sub){
    int?last_index?=?1;
    List,?Integer>>?results?=?new?ArrayList,?Integer>>();?//存儲最終結果
    HashMap,?Integer>?first_input?=?process_rawdata(raw_input,?min_sub);?//獲取第一個頻繁項集
    ArrayList>?candidates?=?apriori_gen(first_input,?last_index);?//獲取第二個候選項集
    while(!(candidates.size()?==?0))?{???//循環終止條件,無法選出下一個候選集合為止
    HashMap,?Integer>?result?=?new?HashMap,?Integer>();
    for(int?i?=?0;?i?=?min_sub)
    result.put(candidates.get(i),?count);??//將滿足結果的加入結果集中
    }
    if(result.size()?>?0)
    results.add(result);
    last_index++;???????????????????????????????//索引加1
    candidates?=?apriori_gen(result,?last_index);??//計算下一個候選項集合
    }
    return?results;
    }
    public?static?void?main(String?args[])?throws?IOException?{
    ArrayList>?raw_data?=?new?ArrayList>();??//存儲原始數據
    File?file?=?new?File(".\\data\\apriori.txt");???//獲取外部原始事物數據
    BufferedReader?reader?=?new?BufferedReader(new?FileReader(file));
    String?string?=?"";
    while((string?=?reader.readLine())!=null){
    Set?item?=?new?HashSet();
    String[]?items?=?string.split(",");
    for(int?i?=?0;?i?,?Integer>>?result?=?apriori.apriori_main(raw_data,?2);?//定義min_sub為2
    System.out.println(result.get(result.size()-1));??//輸出最后結果
    }
    }

    以上就是小編今天的分享了,希望可以幫助到大家。

    文檔

    java apriori

    Apriori算法是第一個關聯規則挖掘算法,它利用逐層搜索的迭代方法找出數據庫中項集的關系,以形成規則,其過程由連接(類矩陣運算)與剪枝(去掉那些沒必要的中間結果)組成。
    推薦度:
    為你推薦
    資訊專欄
    熱門視頻
    相關推薦
    java archive java arcsin java arccos java arctan java args java arrays.sort java ascii java asmx java aspectj java aspose java assembly java async win10專業版和企業版的區別 java bacnet java barrier java base64 java base64decoder java bean 手機充電時可以玩手機嗎 手機充電發熱發燙是什么原因 java application java append 蘋果13藍牙搜索不到設備怎么辦 java apns java ant java annotation java android iphone呼叫失敗是什么原因 java algorithm ipad2是哪年的 java akka java aggregation java aes加密 java advice java addall java add java actuator 西北五省是哪五省 java activity java activiti
    Top 国产69精品久久久久久久| 久久久久亚洲精品美女| 亚洲国产精品18久久久久久| 日韩精品免费视频| 国产精品户外野外| 国产精品免费观看久久| 亚洲国产精品张柏芝在线观看| 国产综合精品女在线观看| 国产精品一区二区三区免费| 亚洲中文字幕精品久久| 91精品国产亚洲爽啪在线观看| 潮喷大喷水系列无码久久精品| 国产啪精品视频网站丝袜| 亚洲欧洲精品成人久久曰| 中文字幕精品一区影音先锋| 亚洲线精品一区二区三区影音先锋| 一本大道无码日韩精品影视| 久久99精品久久久久久综合| 91精品国产高清久久久久久io | 国产a不卡片精品免费观看| 国产精品视频网站你懂得| 四虎国产精品永久免费网址| 国内精品久久久久久久97牛牛| 国产精品理论片在线观看| 国产精品亚洲综合一区在线观看| 国产精品无码免费播放| 91免费精品国自产拍在线不卡| 亚洲理论精品午夜电影| 91精品福利一区二区三区野战| 日韩精品久久久久久久电影蜜臀| 久久久精品免费国产四虎| 亚洲精品国产品国语在线| 中文字幕九七精品乱码| 伊人久久国产精品| 亚洲精品制服丝袜四区| 亚洲精品无码不卡在线播放HE| 天美传媒精品1区2区3区| 亚洲午夜国产精品无码 | 国产精品亚洲色图| 国产91精品久久久久999| 丰满人妻熟妇乱又伦精品软件|